N e

Assessing the Reliability of Performance

Assessment Scores: Some

Considerations in

Selecting an Appropriate Framework

André F. De Champlain, PhD
Andrea Gotzmann, PhD
Sirius Qin, MS

he incorporation of learner assessments has

become part and parcel of the accreditation

process over the past few decades as a means
of evaluating program or instructional effectiveness.'
Given the high stakes associated with assessments not
only for individual candidate-based decisions but also
programs as a whole, it is critical to ensure that scores
based on any tools meet certain psychometric
standards. At its most elemental level, any test score
is intended to reflect the competency domain(s)
presumed to underlie an assessment. For example, if
a candidate obtains a score of 90% on a direct
observation tool, this might be interpreted as reflect-
ing “strong” patient care, even though the latter is, in
all likelihood, established on a small number of
encounters. Given that high-stakes decisions may be
based on such observational tools, it is critical that the
sample of performance be reflective of the candidate’s
true ability in that competency. Reliability refers to
the extent to which performance on any assessment
(ie, in a restricted number of encounters) is indicative
of the candidate’s true competency level (ie, in an
infinite number of encounters).”> An “unreliable”
assessment (ie, one that does not reflect the candi-
date’s true competency level) could have dire conse-
quences not only for the physician’s medical
education but also for the accreditation of the
postgraduate program.

Due to restricted testing time, any assessment
encompasses a limited sample of encounters that
theoretically represents the domain of interest. The
selection of 10 patients for inclusion into a direct
observation assessment, for example, might be
predicated on 3 hours of testing time. However, one
could conceive of different sets of 10 patients that
could have been selected. The program director who
is reviewing a candidate’s score of 90% with these 10
patients is not interested in restricting his or her
interpretation of that “strong” performance to these
10 specific encounters, but rather generalizes this
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statement to the (theoretically infinite) pool of
encounters from which the sample of 10 was selected.

Yet, several sources of measurement error can
detract from the accuracy or precision with which
the performance on a restricted sample of encounters
generalizes to the broader domain. With performance
assessments (in addition to the restricted sample of
encounters), the examiners, the setting, and other
factors can impede a candidate’s score. Reliability
allows us to estimate how well a score on any
assessment (ie, a sample of performance) generalizes
to the broader domain(s) of interest. With the
previous example, how accurately does a score of
90%, in 10 patient encounters, scored by 10
examiners, generalize to all possible patient encoun-
ters and physician examiners? This generalization is
quantified with a reliability coefficient.

Note that patients and examiners are sources of
measurement error, given that any candidate’s true
score or ability level should not depend on the sample
of patients nor the examiners encountered. A candi-
date’s true ability level should be invariant across all
these sources of measurement error or facets. In
reality, all of these sources will detract from reliability
due to the lack of representativeness of the patient
encounters selected for an examination and the poor
training of examiners.

Commonly, Cronbach’s o coefficient is computed as
the reliability estimate largely because it is readily
available in most statistical software packages.?
However, the use of Cronbach’s o with examinations
that are affected by several sources of measurement
error, such as performance-based assessments, is ill-
advised. Specifically, this coefficient does not partition
all sources of measurement error in the computation
of the reliability coefficient; rather, it is restricted to
only 1 facet (ie, “patient encounters”) in the previous
example. Cronbach’s o can thus yield a very
misleading (spurious) reliability estimate because of
its inability to incorporate (and partition out) all
sources of measurement error.
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Generalizability Theory (G Theory) is a reliability
framework that allows us to properly quantify the
impact of these error sources in regard to the extent to
which we can generalize performance in a restricted
sample of conditions (patient encounters, examiners)
to broader domains. G Theory is an extension of
Cronbach’s o that allows the user to prespecify and
estimate the impact of all potential sources of
measurement error.”

G Theory uses analysis of variance modeling to
estimate the amount of variability in scores due to
sources of measurement error as well as their impact
on the reliability coefficient, referred to as a general-
izability coefficient (G coefficient). To use G Theory
most efficiently and in a helpful manner, careful
consideration must be given to all aspects of
examination development (eg, the number of raters,
how they are to be assigned to candidates, the number
of stations, etc). For example, to estimate how much
variance is due to raters, the raters need to score some
common elements of the assessment (ie, either
common patients or candidates).

To illustrate the application of G Theory, imagine a
9-patient encounter assessment that is completed by
90 candidates as a requirement in a given postgrad-
uate program. The assessment targets the “patient
care” Accreditation Council for Graduate Medical
Education competency. Three examiners are assigned
to rate different candidates: (1) examiner 1 rates
candidates 1 to 30; (2) examiner 2 rates candidates 31
to 60; and (3) examiner 3 rates candidates 61 to 90. In
G Theory parlance, this is a p:r X pe design, where p,
1, and pe respectively correspond to persons (candi-
dates), raters (examiners), and patient encounters.
Persons are nested within raters (p:r), since not all
candidates are rated by the same examiner. Further-
more, persons nested within raters are crossed with
patient encounter (p:r X pe) because it is assumed in
this example that all candidates encounter the same 9
patients in their assessment.

The Cronbach’s o value for this dataset was 0.86,
which users may infer as “highly reliable” (ie, scores
generalize well to domains targeted by the examina-
tion and allow us to accurately rank order candidates
from low to high). However, the reliability estimate is
spuriously inflated, as supported by an analysis using
G Theory conducted on the same dataset using a p:r X
pe design (TABLE).

The variance component associated with p:r is akin
to true score variance, as it provides an estimate of the
amount of score variability due to true differences in
ability among candidates. Specifically, 7% of total
score variance is due to true difference in ability
among candidates, suggesting some modest spread
and consequently some capability to differentiate

PERSPECTIVES

TABLE
Nine Patient Encounter Assessments: p:r X s Generaliz-
ability Analysis Results

Source of Variance % of Total
Variation Component Variance
Persons:raters (p:r) 0.056 7.2°
Stations (s) 0.025 3.2°
Raters () 0.309 39.5¢
rxs 0.006 0.8
pir X's, e 0.386 49.3

@ This value, though modest, does suggest that there is some variability
among candidates’ true level of patient care, as would be expected. This
modest amount of variance among candidates is perhaps unsurprising
given the relative homogeneity of residents with regard to this and other
competencies.

P The careful selection and balancing of patient encounters, based on a
clearly defined blueprint, should allow us to assemble assessments that
are relatively comparable, in terms of their overall difficulty level. The
small amount of variance due to patient encounters suggests that the
assessments provided to candidates are equitable with respect to
difficulty level, which is a key fairness consideration.

€ The large amount of variance due to raters would not be totally
unexpected in a situation where physician examiners receive little to no
training. In that instance, physicians are more likely to inject personal
biases in the rating task that are unrelated to the competencies targeted
by the assessment.

candidates (rank order). The variance component due
to patient encounter reflects difficult differences. The
small percentage of variance accounted for by this
source suggests that encounters were highly compa-
rable in terms of difficulty. The r X pe variance
component, which is virtually nil, indicates that the
stringency level of the examiners did not differ as a
function of the patient encounter. Finally, the p:r X pe,
e component is a residual term, which reflects the
amount of error in generalizing due to all other
sources not specified in the design.

Of particular interest in this example is the large
amount of variance due to raters (39.5%). Nearly
40% of the variance in the assessment scores is due to
differences in stringency between the 3 raters. Note
that this effect is completely independent from the
abilities of the 90 candidates. A G coefficient of 0.57
was computed—a significantly lower value than
Cronbach’s o.

What might account for the large difference in
reliability estimates obtained with the assessment
scores? In calculating Cronbach’s o, the large differ-
ences in candidate scores due to the high variability
among examiners (a source of measurement error)
gets “confounded,” as true score variance which
artificially inflates the reliability coefficient. The
highly divergent examiners are “injecting” a high
level of score variance due to their own variability as
examiners rather than being reflective of differences in
candidate ability levels. Since there is no mechanism
in the calculation of Cronbach’s o to account for
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examiner variability, this gets incorrectly partitioned
as true score variance or true differences among
candidate abilities. In G Theory, the error variance
due to examiners is correctly partitioned out of true
score variance and treated as a source of measurement
error, which appropriately lowers the G coefficient
value.

This example illustrates the pitfalls that can result
from the sole use of Cronbach’s o coefficient in
estimating the reliability of scores with highly
complex assessments, such as those commonly used
in postgraduate medical education. It is important to
point out, however, that Cronbach’s o is appropriate
in instances where a single rater is involved in the
assessment. Also, for those assessments, such as
simulations, which may involve clear scoring keys
with little to no rater input, reliability can be
confidently estimated with Cronbach’s o given that
there is only 1 source of measurement error (scenar-
10).

However, in the example used to illustrate the
concept, the high Cronbach’s o value (0.86) could
lead the medical educator to commit erroneous high-
stakes decisions (promotion, graduation, etc), given
the limitations of the reliability coefficient and its
inability to properly account for the large amount of
variability due to examiners. For any assessment that
involves several facets (multi-source feedback, direct
observation—based rating scales, etc), it is highly
recommended that the practitioner complete a gener-
alizability analysis not only to properly estimate
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reliability, but also to garner information that might
be beneficial in improving the assessment for future
uses.
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