Measuring Progressive Independence With the Resident Supervision Index: **Empirical Approach**

T. MICHAEL KASHNER, PHD, JD JOHN M. BYRNE, DO BARBARA K. CHANG, MD, MA STEVEN S. HENLEY. MS RICHARD M. GOLDEN, PHD DAVID C. ARON, MD, MS GRANT W. CANNON, MD STUART C. GILMAN, MD, MPH GLORIA J. HOLLAND, PHD CATHERINE P. KAMINETZKY, MD, MPH SHERI A. KEITZ, MD, PHD ELAINE A. MUCHMORE, MD TETYANA K. KASHNER, MD ANNIE B. WICKER, BS

Abstract

Background A Resident Supervision Index (RSI) developed by our research team quantifies the intensity of resident supervision in graduate medical education, with the goal of testing for progressive independence. The 4-part RSI method includes a survey instrument for staff and residents (RSI Inventory), a strategy to score survey responses, a theoretical framework (patient centered optimal supervision), and a statistical model that accounts for the presence or absence of supervision and the intensity of patient care.

Methods The RSI Inventory data came from 140 outpatient encounters involving 57 residents and 37 attending physicians during a 3-month period at a Department of Veterans Affairs outpatient clinic. Responses are scored to quantitatively measure the intensity of resident supervision across 10 levels of patient services (staff is absent, is present, participated, or provided care with or without a resident), case discussion (resident-staff interaction), and oversight (staff reviewed case, reviewed medical

T. Michael Kashner, PhD, JD, is Professor and Associate Chair for Translational Research, Department of Medicine, Loma Linda University Medical School and Director of the Center for Advanced Statistics in Education at the Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, Professor of Psychiatry at the University of Texas Southwestern Medical Center at Dallas, TX, and Health Specialist with the Office of Academic Affiliations, Department of Veterans Affairs, Washington, DC; John M. Byrne, DO, is Associate Chief of Staff for Education and Co-Director of the Center for Advanced Statistics in Education at the Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, and Assistant Professor of Medicine, Loma Linda University Medical School, Loma Linda, CA; Barbara K. Chang, MD, MA, is Director of Medical and Dental Education, Office of Academic Affiliations, Department of Veterans Affairs, Washington, DC, and Professor of Medicine (emeritus), University of New Mexico School of Medicine, Albuquerque, NM; Steven S. Henley, MS, is President, Martingale Research Corporation, Plano, TX; Richard M. Golden, PhD, is Professor of Cognitive Science and Engineering, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX; David C. Aron, MD, MS, is Associate Chief of Staff for Education, VA Senior Scholar, Louis Stokes Cleveland DVA Medical Center, Cleveland, OH, and Professor of Medicine & Epidemiology & Biostatistics, School of Medicine, and Professor of Organizational Behavior at the Weatherhead School of Management, Case Western Reserve University, Cleveland, OH; Grant W. Cannon, MD, is the Associate Chief of Staff for Academic Affiliations, George E. Wahlen VA Medical Center, Salt Lake City, UT and Professor and Thomas E. and Rebecca D. Jeremy Presidential and Endowed Chair for Arthritis Research, School of Medicine, University of Utah, Salt Lake City, UT; Stuart C. Gilman, MD, MPH, is Director, Advanced Fellowships and Professional Development, Office of Academic Affiliations, Department of Veterans Affairs, Washington DC and Clinical Professor of Health Sciences, University of California Irvine School of Medicine, Irvine, CA; Gloria J. Holland, PhD, is Special Assistant for Policy and Planning, Office of Academic Affiliations, Veterans Health Administration, Department of Veterans Affairs, Washington, DC; Catherine P. Kaminetzky, MD, MPH, is Associate Chief of Staff for Education, Department of Veterans Affairs Medical Center, Durham, NC, and Assistant Professor, Department of Medicine, Duke University School of Medicine, Durham, NC; Sheri A. Keitz, MD, PhD, is Chief, Medical Service, Miami VA Healthcare System, and Professor of Medicine and Associate Dean, Miller School of Medicine, University of Miami Medical School, Miami, FL; Elaine A. Muchmore, MD, is Associate Chief of Staff for Education at the VA Medical Center in San Diego, CA, and Professor of Clinical Medicine and Vice Chair for Education, Department of Medicine, School of Medicine, University of California at San Diego, CA; Tetyana K. Kashner, MD, is a resident, Department of Obstetrics and Gynecology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA; Annie B. Wicker, BS, is a Health Science Specialist, Office of Academic Affiliations and Data Coordinator for Center for Advanced Statistics in Education, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA.

This study was funded in part by grant SHP 08-164 from the Department of Veterans Affairs' Health Services Research and Development Service (Dr T. M. Kashner). Development of the statistical methods was supported in part by grant R44CA139607 from the Small Business Innovation Research program of the National Cancer Institute and by grant R43AA013670 from the National Institute on Alcohol Abuse and Alcoholism (Mr Henley). All statements and descriptions expressed herein do not necessarily reflect the opinions or positions of the Department of Veterans Affairs or the National Institutes of Health of the Department of Health and Human Services.

Received November 10, 2009; revision received January 1, 2010; accepted January 21, 2010.

DOI: 10/4300/JGME-D-09-00085.1

Corresponding author: T. Michael Kashner, PhD, JD, Jerry L. Pettis Memorial VA Medical Center, Loma Linda VA Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, 214.648.4608, michael.kashner@va.gov

chart, consulted with staff, or assessed patient). Scores are analyzed by level and for patient care using a 2-part model (supervision initiated [yes or no] versus intensity once supervision was initiated).

Results All resident encounters had patient care supervision, resident oversight, or both. Consistent with the progressive independence hypothesis, residents were 1.72 (P = .019) times more likely to be fully responsible for patient care with each additional postgraduate year. Decreasing case complexity, increasing clinic workload, and advanced nonmedical degrees among attending staff were negatively

associated with supervision intensity, although associations varied by supervision level.

Conclusions These data are consistent with the progressive independence hypothesis in graduate medical education and offer empirical support for the 4part RSI method to quantify the intensity of resident supervision for research, program evaluation, and resident assessment purposes. Before informing policy, however, more scientific research in actual teaching settings is needed to better understand the relationships among patient outcomes, clinic workload, case complexity, and graduate medical education experience in resident supervision and professional development.

Background

The concept of graded responsibility for care and progressive independence from supervision has long been a model for graduate medical education (GME)1-3 and has been incorporated into accreditation standards, policy statements, and supervision requirements.4-7 However, no study to date has attempted to quantitatively estimate progressive independence in actual clinical settings as residents are promoted from one postgraduate year to the next.

The 4-part Resident Supervision Index (RSI) was developed to quantitatively measure and assess the intensity of resident supervision, which can be used to test for progressive independence. A prior article has described the feasibility and psychometric reliability of the RSI Inventory as a survey

instrument to collect supervision information from attending staff and residents (APPENDIX 1),8 and in the companion article published in this issue of Journal of Graduate Medical Education, we describe the theory of patient-centered optimal supervision and derive the 2-part analytic models designed to test theory-driven hypotheses.9 In this article, we introduce the final part of the 4-part RSI method by describing how RSI Inventory responses are scored to compute supervision intensity.

To measure the intensity of resident supervision in patient care and to test for progressive independence, scores are computed for outpatient encounters with internal medicine residents who rotated through a Department of Veterans Affairs (VA) clinic in 2008. The RSI method is evaluated by testing 3 RSI theory-driven hypotheses, derived elsewhere,9 in

TABLE 1 SUPERVISION LEV	rels by Phase, With Parti	ICIPANTS AND RESIDEN	IT SUPERVISION INDI	EX (RSI) DATA SOURCES
Supervision Level	Attending Physician	Resident Physician	Patient	Questionnaire Source
	Resident Oversight Phas	e	1	
1.1 Patient assessed	Present	Absent	Present	[1(A)(i)] + [1(A)(iii)] ^a
1.2 Clinical staff consulted	Present	Absent	Absent	[1(B)] ^a
1.3 Medical chart reviewed	Present	Absent	Absent	[1(C)] ^a
1.4 Case presented	Present	Present	Absent	[2(A)], [3(A)], [3(B)(i)–(vi)] ^b
	Care Discussions Phase	1	1	
2.1 Interacted	Present	Present		[2(A)], [3(A)], [3(B)(i)–(vi)] ^b
	Patient Services Phase	1	1	
3.1 Separately provided	Involved	Absent	Present	[2(C)] ^b
3.2 Provided	Involved	Observed	Present	[2(B)(a)] ^b
3.3 Participated	Involved	Involved	Present	[2(B)(b)(i)] ^b
3.4 Observed	Observed	Involved	Present	[2(B)(b)(ii)] ^b
3.5 Absent attending	Absent	Involved	Present	[2(B)(b)(iii-v)] ^b

From RSI Inventory version 4.01.

^b From RSI Inventory version 3.11.

TABLE 2	DEFINITIONS AND COMPUTATION FORMULAS FOR PHASE AND ENCOUNTER RESIDENT SUPERVISION INDEX (RSI) SUMMARY SCORES
Variable ^a	Explanation
	Patient Services Phase
Definition	Proportion of patient services phase when resident was directly supervised
Formula	$RSI_{serv} = 1 - [(1 - RSI_{3.1}) \times (1 - RSI_{3.2}) \times (1 - RSI_{3.3}) \times (1 - RSI_{3.4})]$
	Care Discussions Phase
Definition	Proportion of patient care involving care discussions ^b
Formula	$RSI_{disc} = RSI_{2.1}$
	Resident Oversight Phase
Definition	Proportion of encounter time involving resident oversight
Formula	$RSI_{over} = 1 - [(1 - RSI_{1.1}) \times (1 - RSI_{1.2}) \times (1 - RSI_{1.3}) \times (1 - RSI_{1.4})]$
	Patient Care ^b
Definition	Proportion of patient care time when resident was directly supervised
Formula	$RSI_{care} = 1 - [(1 - RSI_{serv}) \times (1 - RSI_{disc})]$
	Patient Care Responsibility ^c
Definition	Proportion of patient care time when resident was providing care and attending physician was absent from the room, computed after the attending physician was fully informed about the patient case
Formula	$RSI_{resp} = 1 - RSI_{care}$
	Encounter ^d
Definition	Proportion of encounter time when resident was directly supervised
Formula	$RSI_{enc} = 1 - \left[(1 - RSI_{serv}) \times (1 - RSI_{disc}) \times (1 - RSI_{over}) \right]$

^a For formulas, the supervision-level RSI scores are represented by RSI_{II}, where I designates the corresponding supervision level (1.1–3.4), defined in TABLE 1.

which the intensity of resident supervision is expected to decrease (1) for residents with longer lengths of GME training (progressive independence), (2) in clinics with more workload (workload effect), and (3) with patients who present with less complex medical problems (complexity effect).

Resident Supervision Index

Encounter

To score RSI data, clinical activities in teaching clinics are divided into supervision encounters containing interactions among a resident, an attending physician, and the services they provide to a given patient. Services can be defined as narrowly as a clinical procedure or as broadly as an acute episode of care. For this study, encounters are defined by outpatient visit.

Levels and Phases

Listed in TABLE 1, each encounter can be segmented into 3 clinical phases ordered sequentially over time, beginning

with resident oversight, when attending physicians gather information to assess patient progress, monitor resident performance, and evaluate clinical care. Resident oversight informs the second phase, care discussions, when the attending physician interacts with the resident to discuss the patient's case to inform the third phase, patient services, when the attending physician and resident perform medical procedures. Care discussions and patient services combine to form patient care, distinct from oversight. Phases may run intermittently during an encounter as residents and attending physicians go back and forth between oversight, discussions, and providing services.

Phases are further segmented into levels representing degrees of supervision intensity. During the resident oversight phase, attending physicians collect information by assessing the patient in separate examinations, by consulting with clinical staff, by reviewing the medical chart, and by asking residents to give case presentations. During the care discussions phase, attending physicians interact with

^b Patient care includes encounter time during the patient service phase or care discussions phase.

^c Defined in the text. Scores are computed based on the assumption that attending physicians are fully informed about each case, or effectively that

d Encounter includes the patient service phase, care discussions phase, and resident oversight phase.

TABLE 3 DEMOGRAPHICS, USE OF INPATIENT AND OUTPATIENT CARE, AND DIAGNOSES OF STUDY PATIENTS

	l water
Variable	Value (n = 136)
Age, y	
Mean (SD) [range]	63 (11) [24–91]
Age group, No. (%)	(n = 136)
<25	1 (1)
25-34	1 (1)
35-44	2 (1)
45-54	23 (17)
55-64	55 (40)
≥65	54 (40)
Sex, No. (%)	(n = 136)
Female	7 (5)
Male	129 (95)
Annual income, \$1000, No. (%)	(n = 128)
00-24	75 (59)
25-49	48 (38)
50-74	1 (1)
75-99	3 (2)
≥100	1 (1)
Priority status veteran, No. (%) ^a	(n = 136)
Priority	119 (88)
Other	17 (13)
Health insurance coverage, No. (%)	(n = 136)
Private health insurance	60 (44)
None	76 (56)
Outpatient care ^b	(n = 136)
Day of encounter	
Procedures per user, mean (SD) [range]	3.1 (3.0) [1–19]
30 Days before encounter	
Initiated care, No. (%)	101 (74)
Visits per user, mean (SD) [range]	2.9 (2.2) [1–17]
Clinic stops per user, mean (SD) [range]	4.5 (3.8) [1–24]
Procedures per user, mean (SD) [range]	9.3 (8.2) [1–43]

Variable	Value (n = 136)
30 Days after encounter	
Initiated care	103 (76)
Visits per user, mean (SD) [range]	3.0 (2.1) [1–15]
Clinic stops per user, mean (SD) [range]	4.8 (4.0) [1-23]
Procedures per user, mean (SD) [range]	9.7 (7.9) [1–41]
Inpatient care	(n = 136)
90 Days before encounter	
Initiated care, No. (%)	16 (12)
Admissions per user, mean (SD) [range]	1.2 (0.6) [1–3]
Bed sections per user, mean (SD) [range]	1.6 (0.9) [1–4]
Days per user, mean (SD) [range]	3.6 (2.5) [1–8]
30 Days after encounter	
Initiated care, No. (%)	11 (8)
Admissions per user, mean (SD) [range]	1.0 (0.0) [1–1]
Bed sections per user, mean (SD) [range]	1.6 (1.2) [1–4]
Days per user, mean (SD) [range]	6.2 (4.9) [2–17]
Diagnoses or disorder classes ^c	(n = 135)
Day of encounter	
Diagnoses or disorder classes, mean (SD) [range]	2.90 (1.87) [1–8]
90 Days before and 30 days after encounter	
Diagnoses or disorder classes, mean (SD) [range]	7.10 (2.91) [1–13]
Diagnosis or disorder class, No. (%)	
Infectious (001–139)	25 (19)
Neoplasm (140–239)	25 (19)
Endocrine glands (250–259)	84 (62)
Metabolic or immunity (270–279)	67 (50)
Blood or organs (280–289)	27 (20)
Mental disorders (290–319)	74 (55)
Nervous/sense (320–389)	58 (43)
Hypertensive (401–405)	88 (65)
Heart disease (410–429)	47 (35)
Circulatory system (430–459)	27 (20)
Respiratory system (460–519)	32 (24)
Digestive system (520–579)	48 (36)

	-
Variable	Value (n = 136)
Genitourinary system (580–629)	39 (29)
Skin (680–709)	24 (18)
Musculoskeletal (710–739)	69 (51)
III defined (780–799)	68 (50)
Injury or poisoning (800–999)	19 (14)

CONTINUED

- ^a Department of Veterans Affairs–defined priority levels 1 through 4. ^bClinic stop refers to different clinics the patient attends during an outnatient visit
- $^{
 m c}$ International Classification of Diseases, Ninth Revision (ICD-9) diagnoses by class based on 3-digit codes. Congenital anomalies (codes 740-759) and conditions originating in perinatal period (760-779) were excluded.

residents to change care, order tests, or direct services. During the patient services phase, attending physicians may separately provide care when residents are physically absent or provide care when residents are present to observe. When residents are providing care, the attending physician may either participate in care, observe care, or be absent from the room but otherwise available in the clinic or on call.

In addition to oversight, attending physicians may become informed when engaged in the patient's care or during care discussions with residents. An activity is classified as oversight, however, whenever its sole purpose is to gather information about the case. Encounter minutes that can be classified simultaneously into 2 phases are to be classified by the later phase. For example, time the attending physician spends simultaneously collecting information (resident oversight phase) and directing care (care discussions phase) would be classified as care discussions.

Scores

TABLE 3

Based on theory of patient-centered optimal supervision,9 intensity scores are computed for each of 10 levels listed in TABLE 1, the 3 phases, patient care, and encounter. Case examples are given in APPENDIX 2.

Residents supervised at the least intensive level (staff absent from the room [level 3.5]) are said to have "no direct supervision" during that encounter moment. The score is measured in minutes and is represented symbolically by [RSI_{3.5}]. Scores for the remaining 9 "directly supervised" levels ($[RSI_{1,1}]$, $[RSI_{1,2}]$,... $[RSI_{3,4}]$) are measured as time proportions, with the numerator equal to the time at the given level and with the denominator equal to the sum of time over all levels of equal or lesser intensity plus the time at all later phases. Scores for directly supervised levels range between 0 and 1, with higher scores indicating more intensive supervision. Scores are calculated so that the time when the resident was supervised at a given level and phase is compared only with time during the encounter when the resident was at an equal or lesser level of supervision intensity, or at a later phase. Thus, higher scores are associated with more minutes in the given level, fewer minutes in levels of lesser intensity during the same phase, and fewer minutes in later phases. Scores are computed to weigh each moment at a given level against the rest of the time during the encounter when the resident experienced less, not more, intensive supervision.

Summary scores can be computed by phase, for patient care, and for the encounter. Formulas and definitions are given in TABLE 2. The summary score for the encounter $[RSI_{enc}]$ equals the proportion of total encounter time when the resident was directly supervised. We define responsibility for care as 1 minus the intensity of resident supervision. As intensity of supervision decreases from 1 to 0, the intensity of assigned responsibility for patient care increases from 0 to 1. If supervision intensity equals the proportion of encounter time when the resident was directly supervised, then responsibility represents the proportion of encounter time when the resident provided care with staff absent from the room. Our theoretical framework is based on the assumption that attending physicians are fully informed about the case (oversight) when supervising residents for care discussions and patient services.9 We thus compute patient care responsibility $[RSI_{resp}]$ after staff oversight as follows:

(1)
$$RSI_{resp} = 1 - (RSI_{enc} \mid RSI_{over} = 0)$$

(2)
$$= 1 - \{1 - [(1 - RSI_{serv}) \times (1 - RSI_{disc}) \times (1 - \{RSI_{over} = 0\})]\}$$

$$= [(1 - RSI_{serv}) \times (1 - RSI_{disc})]$$

$$(4) = 1 - RSI_{care}$$

During an encounter, residents are said to be (1) (a) directly supervised at level *l* if the resident is supervised at level l during any encounter moment ($RSI_1 > 0$) or (b) autonomous from supervision at level l if otherwise $(RSI_1 = 0)$, (2) directly supervised for the encounter whenever the resident is supervised during any encounter moment at any of 9 directly supervised levels ($RSI_{enc} > 0$), (3) (a) autonomously providing care ($RSI_{care} = 0$) or (b) fully responsible for care $(RSI_{resp} = 1)$ whenever attending staff did not hold care discussions and was absent from the room throughout resident-provided patient services, or (4) unattended if the resident was autonomously providing care and was without resident oversight ($RSI_{enc} = 0$). Fully responsible residents ($RSI_{care} = 0$) are not unattended $(RSI_{enc} > 0)$ if they receive oversight $(RSI_{over} > 0)$.

Methods

Data

The analyses use data from the VA RSI feasibility trial. The trial shows that RSI Inventory version 3.11 is both feasible and reliable in collecting information about time spent during supervision encounters, as described by Byrne et al.8

TABLE 4 DEMOGRAPHIC, SPECIALTY, AND MEDICAL EDUCATION CHARACTERISTICS OF RESPONDING RESIDENT PHYSICIANS AND ATTENDING PHYSICIANS

Characteristic	Resident Physicians (n = 57)	Attending Physicians (n = 37)
Age, y	(n = 55)	(n = 37)
Mean (SD) [range]	32 (5) [25–46]	43 (9) [30-61]
Age group, No. (%)		
<25	0	0
25-34	41 (75)	10 (27)
35-44	11 (20)	10 (27)
45-54	3 (5)	12 (32)
55–64	0	5 (14)
≥65	0	0
Sex, No. (%)	(n = 56)	(n = 37)
Female	24 (43)	12 (32)
Male	32 (57)	25 (68)
Race/ethnicity, No. (%)	(n = 52)	(n = 35)
African American	3 (6)	5 (14)
Asian	22 (42)	20 (57)
Latino	1 (2)	1 (3)
Middle Eastern	4 (8)	0
Native American	5 (10)	1 (3)
White	17 (33)	8 (23)
Time since college graduation, mean (SD) [range], y	9 (5) [4–26]	21 (9) [8-40]
Time since medical school graduation, y	(n = 46)	(n = 37)
Mean (SD) [range]	5 (6) [0-22]	17 (9) [4-39]
Range group, No. (%)		
1-4	22 (48)	3 (8)
5-9	14 (30)	9 (24)
10-14	4 (9)	4 (11)
15–19	4 (9)	7 (19)
20-24	2 (4)	8 (22)
25–29	0	2 (5)
≥30	0	4 (11)
Medical school location, No. (%)	(n = 56)	(n = 37)
United States	30 (54)	28 (76)
Non–United States	26 (46)	9 (24)

TABLE 4 CONTINUED

Characteristic	Resident Physicians (n = 57)	Attending Physicians (n = 37)
Current or completed postgraduate year level ^a	(n = 56)	(n = 36)
1	22 (39)	0
2	16 (29)	0
3	15 (27)	19 (53)
4	1 (2)	10 (28)
5	0	2 (6)
6	1 (2)	5 (14)
7	1 (2)	0
Specialty	(n = 56)	(n = 37)
Internal medicine	47 (84)	33 (89)
Preventive medicine	2 (4)	0
Surgery	4 (7)	4 (11)
Psychiatry	2 (4)	0
Podiatry	1 (2)	0
Entered non-US residency, No. (%)	(n = 57)	(n = 37)
Yes	6 (11)	4 (11)
No	51 (89)	33 (89)
Advanced nonmedical degree, No. (%)	(n = 57)	(n = 37)
Master's or doctorate	12 (21)	6 (16)
No	45 (79)	31 (84)

a Postgraduate year level represents a resident's current status in a graduate medical education program and for attending staff represents the last postgraduate year level successfully completed.

Briefly, after receiving 1-day training for the manualized RSI Inventory instrument by study investigators and under supervision by the associate chief of staff for education, 2 registered nurses and 3 clinical care coordinators interviewed consenting attending staff and their consenting residents rotating through primary care general internal medicine clinics at the Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, from May through September 2008. Under a VA Institutional Review Boardapproved protocol, the RSI Inventory was administered at the end of the resident's shift for patient encounters selected at random from among scheduled clinic appointments. Patients were limited to those who had a diagnosis of diabetes or major depression. These diagnoses are highly prevalent among VA patients, and the patients often present with moderate case complexity. The RSI scores were computed based on resident responses only.

Patient care demographics, International Classification of Diseases, Ninth Revision (ICD-9) diagnosis codes, and

inpatient and outpatient care information were obtained from the VA's electronic databases. 10,11 Demographic, education, and GME information were obtained from selfreports during baseline interviews with residents and their attending physicians.

The length of the resident's current GME program was measured in months, but effect sizes were reported in years. Case complexity was computed as the number of ICD-9 clinical conditions reported in the patient's medical chart for the indexed visit that aggregated into 1 of 17 mutually exclusive and exhaustive disorder classes (TABLE 3). Case complexity was further refined by including data about patients' private health insurance coverage derived from the VA's electronic medical chart. Results of prior studies^{11,12} suggested that VA patients with private health insurance coverage are in overall better health and require less complex care than VA patients without private insurance. Workload by shift was computed by the number of procedures performed in the clinic during each shift per available attending staff.

TABLE 5

NUMBER OF ENCOUNTERS WHEN THE RESIDENT WAS SUPERVISED, AND MEAN RESIDENT SUPERVISION INDEX (RSI) SCORE AMONG SUPERVISED RESIDENTS, BY SUPERVISION LEVEL^a

Resident Oversight Phase 90 (64)	
00 (64)	
90 (04)	0.23 (0.11) [0.02-0.50]
Care Discussions Phase	
45 (32)	0.23 (0.09) [0.05-0.40]
Patient Services Phase	
0	
10 (7)	0.19 (0.16) [0.05-0.50]
35 (25)	0.24 (0.12) [0.04-0.60]
2 (1)	0.17 (^d) [0.17–0.18]
140 (100)	27.2 (11.7) [5–65]
Summary Scores	
72 (51)	0.28 (0.14) [0.05-0.75]
140 (100)	0.28 (0.13) [0.02-0.75]
	Care Discussions Phase 45 (32) Patient Services Phase 0 10 (7) 35 (25) 2 (1) 140 (100) Summary Scores 72 (51)

Residents were supervised when RSI > o by supervision level or summary.

d Indicates too few cases to compute.

Analyses

The association between length of GME training and RSI supervision intensity is computed using a 2-part model.9 An exhaustive search was used within each covariate category to identify potential confounders.¹³ With complex 4-way interactions between resident, attending physician, patient, and clinic shift, we assumed that supervision intensity was independently distributed over 140 encounters. The length of time when residents provided care with an absent attending (RSI_{3.5}) was regressed using a log linking function, with exponentiated coefficients measuring effect sizes as simple time ratios.

Results

Fifty-seven residents (TABLE 4) and 37 attendings (TABLE 4) cared for 136 patients (TABLE 3) during 140 encounters from May through September 2008. The mean (SD) daily workload over 137 shifts averaged 578 (36) patients and 2309 (189) procedures per day. The total mean (SD) time per encounter was 32.7 (14.8) minutes (range, 5-81).

TABLE 5 summarizes RSI scores by level of intensity. In 90 of 140 encounters (64%), residents presented the case to the attending staff, representing a mean of 23% of the total encounter time. The attending physician engaged in care

discussions in 45 of 140 encounters (32%), consuming 23% of the total time devoted to patient care. By contrast, there were no encounters when care was provided while the resident was not present. Among patient services, 35 of 140 encounters (25%) involved an attending physician participating in care during 24% of the total time when the attending physician was participating, observing, or absent from care. In 72 of 140 encounters (51%), attending physicians directly supervised residents, accounting for 28% of the total time residents were providing care. Attending physicians directly supervised their residents for all 140 encounters so that no resident was left unattended ($RSI_{enc} = 0$).

TABLE 6 gives estimates of the associations between length of GME training and RSI supervision intensity adjusted for case complexity, clinic workload, and patient, resident, and attending physician characteristics. Consistent with the progressive independence hypothesis, residents who were advanced by 1 year in their GME training were only 58% as likely to have been directly supervised during a patient care encounter, or alternatively 1.72 (1 divided by 0.58) (95% confidence interval, 1.09-2.70) times more likely to be fully responsible for patient care. Greater responsibility for patient care (progressive independence) was the result of attending staff being less likely to participate in services or hold case discussions with

b Absent-attending level is measured in minutes, or time attending physician was absent (ie, not physically present in the examination or treatment room) while the resident provided care.

^c Patient care summary (RSI_{care}) combines the patient services phase and care discussions phase. Encounter summary (RSI_{enc}) combines the patient services phase, care discussions phase, and resident oversight phase to comprise the entire encounter. Oversight included only resident case presentations and does not include oversight from medical chart review, staff consultation, or patient assessments, as data were not collected.

residents. However, once supervised, length of GME training had little statistically significant effect on the intensity of supervision. On the other hand, residents advanced by 1 year spent only 62% as much time providing care with attending staff absent than their lower-level counterparts. This is consistent with the theory that upperlevel residents are more efficient producers of health care.

Patients who presented with more medical conditions were associated qualitatively with different levels of supervision, but not quantitatively with a higher intensity of supervision. Attending physicians who supervised residents for patients presenting with more conditions tended to be more likely to interact with the resident in care discussions but less likely to participate in providing care.

Residents treating patients with private health insurance were only 42% as likely to be supervised, with only 37% of the intensity once supervision began, than their counterparts who were treating uninsured patients. Supervision was less because their attending staff held fewer care discussions and participated less in patient care.

The quantity of workload facing clinic staff did not effect whether residents were supervised. However, once supervision began, residents were supervised at only 33% of the intensity as their counterparts who rotated through clinics where 100 fewer procedures were produced per day per attending physician. Supervision was less because attending staff participated less in patient care.

We also found that attending physicians with advanced degrees (other than medicine) were no more likely to initiate supervision. Once supervision began, degreed attendings supervised with only 24% of the intensity as their nondegreed counterparts, a consequence of degreed staff participating less in patient care. A resident's foreign medical graduate status had little effect on the likelihood or intensity of supervision.

Discussion

In this study, residents in internal medicine were granted more autonomy from supervision in a VA outpatient clinic as they progressed through GME training. Our data also showed more intensive supervision when residents faced more complex patients in clinics with greater workloads. Such findings offer empirical support for an RSI method. Quantifying supervision and measuring progressive responsibility have policy implications for defining supervision standards and measuring GME educational outcomes.14

Building on previous work, 1-3,15 the RSI method consists of a survey instrument (RSI Inventory),8 scoring strategy (presented herein), theoretical framework (patient-centered optimal supervision),9 and analytic framework (2-part model).9 This article shows how RSI Inventory responses were scored to quantify different levels of supervision intensity that, taken together, profile supervision during encounters among residents, attending physicians, and patients in outpatient care settings. Our data provide

support for the RSI method by showing intensity scores covarying with resident experience, complexity of patient cases, clinic workload, and attending physician characteristics, consistent with the patient-centered theory of optimal supervision.

Supervision has often been described as an oversight function designed to ensure the quality of care 15,16 and measured by whether the attending physician made a medical chart notation,17 was physically present,18 was involved,19,20 identified discrepancies,²¹ or participated on the health team.²² In contrast, the RSI defines supervision broadly to include resident oversight, interactive discussions, and attending involvement. To test for progressive independence, we calculated scores that quantified progressive responsibility separately from resident oversight so that residents could be assigned full responsibility for patient care, while remaining under faculty oversight to inform appropriate supervision decisions. In fact, almost half of the VA encounters studied were full-care responsibility assignments with attending oversight.

The RSI method may serve as a tool to help GME directors evaluate a resident's progress toward independence. In recent years, the medical education community has adopted the Accreditation Council for Graduate Medical Education general competencies and learning objectives associated with them to assess residents' competence. At the same time, some have argued that, while competencies have advanced assessment in GME, competency evaluations do not measure clinical performance based on what physicians actually do in practice.^{23–25} Some have noted that the general competency approach risks diverting GME assessment away from actual clinical performance by deconstructing clinical competence into demonstrations of knowledge, skill, and learning objectives.²⁴ By contrast, clinical performance requires the integration and application of all 6 competencies and their application to complex context-specific clinical scenarios. ^{26,27} Therefore, clinical competence may be best assessed through residents' performance of clinical activities and judged by expert clinicians who are familiar with the resident's clinical performance. In fact, a resident's supervisor may be the best judge of a resident's progress toward practice independence.^{28,29} While these judgments are subjective, potentially biased, and limited by a lack of direct observation,²⁶ the collective judgment of faculty over the course of a resident's training may provide a measure to assess a resident's clinical competency.²⁴ Furthermore, few validated tools are available to directly observe trainees' skills and to track the progress of clinical skill development.³⁰ Progressive independence as measured by the RSI relies on the supervisor's judgment about the resident's clinical competencies in situations when his or her first duty is to represent the interest of the patient. Therefore, the RSI potentially provides an opportunity to quantify those judgments as a measure of progression to practice independence, the ultimate educational goal of GME.

TABLE 6

Adjusted Effect of Predictors on the Likelihood and Intensity of Supervision for Patient Care and Selected Supervision Levels^a

	Direct Supervision	(Yes or No) ($RSI > o$ v	$rersus RSI = o)^b$	Supervision Intensit	y (<i>RSI</i> given <i>RSI</i> >	> o) ^c		
Variable	OR (95% CI)	Wald Statistic	P Value	OR %∆ (95% CI)	t Statistic	P Value		
	Length of GME Train	ing ^d	"					
Patient care	0.58 (0.37-0.92)	5.42	.019	0.75 (0.51–1.11)	2.32	.103		
Interacted	0.44 (0.26-0.74)	9.50	0 .002 1.10 (0.76–1.59)	0.79	.49			
Participated	0.59 (0.35–1.01)	3.71	.054	0.61 (0.34–1.08)	2.76	.070		
Absent attending				0.62 (0.39-0.98)	2.52	.045		
	Diagnoses or Disorde	er Classes ^e	-			<u> </u>		
Patient care	1.02 (0.85–1.22)	0.04	.85	1.25 (0.90–1.72)	1.66	.15		
Interacted 1.25 (1.02–1.54) 4.32		.038	1.19 (0.87–1.61)	1.37	.22			
Participated	0.71 (0.55-0.93)	5.94	.015	1.22 (0.81–1.82)	1.18	.28		
Absent attending				0.90 (0.68–1.21)	0.87	.42		
	Private Health Insura	ince						
Patient care	0.42 (0.21–0.86)	5.55	.018	0.37 (0.18-0.76)	3.36	.015		
Interacted	0.41 (0.18-0.93)	4.64	.031	0.44 (0.22-0.88)	2.90	.027		
Participated	0.48 (0.20-1.12)	2.89	.089	0.40 (0.16–1.01)	2.43	.051		
Absent attending				1.50 (0.78-2.89)	1.52	.18		
	Workload ^f	1						
Patient care	0.79 (0.42–1.49)	0.54	.46	0.33 (0.16-0.69)	3.69	.010		
Interacted	0.89 (0.45-1.79)	0.10	.75	0.56 (0.28–1.12)	2.03	.089		
Participated	0.53 (0.25–1.12)	2.76	.097	0.26 (0.10-0.65)	3.58	.012		
Absent attending				3.29 (1.71–6.33)	4.45	.004		
	Advanced Nonmedic	al Degree ^g	"			1		
Patient care	0.34 (0.10-1.11)	3.20	.074	0.24 (0.10-0.76)	3.03	.023		
Interacted	0.42 (0.11–1.67)	1.50	.22	0.60 (0.20–1.85)	1.11	.31		
Participated	0.58 (0.14-2.38)	0.56	.45	0.09 (0.02-0.40)	3.96	.007		
Absent attending				2.36 (0.83–6.73)	2.01	.092		
	Non-US Medical Scho	ool ^h				1		
Patient care	0.55 (0.26–1.15)	2.57	.11	1.05 (0.51–2.17)	0.19	.86		
Interacted	0.69 (0.31–1.56)	0.79	.38	0.93 (0.46-1.85)	0.28	.79		
Participated	0.60 (0.25–1.41)	1.38	.24	1.25 (0.50-3.13)	0.59	.58		
Absent attending				0.51 (0.27-0.98)	2.52	.045		

Abbreviations: CI, confidence interval; GME, graduate medical education; ICD-9, International Classification of Diseases, Ninth Revision; OR, odds ratio; RSI, Resident Supervision Index.

^a Adjusting for case complexity (number of medical conditions at indexed outpatient visit), patient characteristics (patient has private health insurance coverage), resident length in GME training, whether resident is US versus international medical school graduate, attending physician with an advanced master's or doctorate degree in addition to medical degree, clinic workload based on number of procedures during day of indexed outpatient visit per staff physician per 100 procedures.

b Direct supervision is presented as a binary variable representing supervision (yes or no) for the patient care phase (RSI_{care} = o versus RSI_{care} > o), attending interaction level (RSI_{2,1} = o versus RSI_{2,2} > o), and participated in care level (RSI_{3,3} = o versus RSI_{3,3} > o). Effect size is measured as an OR for the likelihood that the resident was supervised at any time during a given level or phase, per encounter.

TABLE 6

CONTINUED

- ^c The RSI scores measure the intensity of supervision given the resident was supervised for the patient care phase (RSI_{care} given RSI_{care} > o), attending interaction level (RSI_{2.1} given RSI_{2.1} > o), and participated in care level (RSI_{3.3} given RSI_{3.3} > o). Effect size is measured as an OR describing the change in RSI scores, which was computed as a proportion. The $\%\Delta$ is the change in absent-attending care minutes computed as a simple ratio. For example, o.62 means the resident spent 62% fewer minutes providing absent-attending care for each additional year of GME training.
- d Resident length of GME training computed in program years.
- e Number of ICD-9 conditions, aggregated into 1 of 17 disease classes, presented during the indexed outpatient visit. Conditions in the same class were counted
- f Workload measured in procedures per 100 performed in the clinic during the 24-hour day corresponding to the indexed outpatient visit associated with the supervision encounter, by MD or DO professional staff.
- 8 Attending physician has an earned advanced degree (master's or doctorate degree) in addition to a medical degree versus no nonmedical advanced degree.
- h Resident physician has an earned medical degree from an international (non-US) medical school versus from a US medical school.

The present study has several limitations. Study data were derived from a single site. Patient use of non-VA sources of care and resident rotations to non-VA facilities were not considered. The study did not measure the appropriateness, quality, or efficiency of resident supervision, nor did it include measures of quality of care or patient health outcomes. Further theoretical and empirical research is recommended.

Conclusions

Data on resident supervision at a VA outpatient clinic offer empirical support for the progressive independence hypothesis and for the 4-part RSI method. The RSI was designed to measure the intensity of resident supervision for research, program evaluation, and resident assessment purposes. An important advantage of RSI scores is that they do not need to be adjusted for patient outcomes, but only if supervisors aim first and foremost to maximize patient outcomes and residents contribute to patient care. Before informing policy, however, more scientific research in actual teaching settings is needed to better understand the relationships among patient outcomes, clinic workload, complexity of assigned cases, and GME experience in resident supervision and professional development.

References

- 1 Kennedy TJ, Regehr G, Baker GR, Lingard LA. Progressive independence in clinical training: a tradition worth defending? Acad Med. 2005;80(10):S106-S111.
- 2 Kennedy TJ, Regehr G, Baker GR, Lingard L. Preserving professional credibility: grounded theory study of medical trainees' requests for clinical support. BMJ. 2009;338(91):eb128. doi:10.1136/bmj.b128.
- 3 Kennedy TJT, Regehr G, Baker GR, Lingard LA. It's a cultural expectation: the pressure on medical trainees to work independently in clinical practice. Med Educ. 2009;43(7):645-653.
- 4 Joint Commission. 2009 Accreditation Process Guide for Hospitals. Oakbrook Terrace, IL: Joint Commission on the Accreditation of Hospital Organizations; 2009.
- 5 Accreditation Council on Graduate Medical Education (ACGME). Common program requirements. Available at: http://www.acgme.org/acWebsite/ dutyHours/dh dutyhoursCommonPRo7012007.pdf. Accessed September 4,
- 6 American Association of Medical Colleges (AAMC). Policy guidance on graduate medical education. Available at: http://www.aamc.org/ patientcare/gmepolicy/gmepolicy.pdf. Accessed September 4, 2009.
- 7 Department of Veterans Affairs, Veterans Health Administration. VHA Handbook 1400.1. Available at: http://www1.va.gov/optometry/docs/ ressupervision14001hk705.pdf. Accessed September 4, 2009.
- 8 Byrne JM, Kashner TM, Gilman S, et al. Measuring the intensity of resident supervision in the Department of Veterans Affairs: the Resident Supervision Index. Acad Med. In press.

- 9 Kashner TM, Byrne JM, Henley SS, et al. Measuring progressive independence with the Resident Supervision Index: a theoretical approach. J Grad Med Educ. 2010;2(1):17-30.
- 10 Kashner TM. Agreement between administrative files and written medical records: a case of the Department of Veterans Affairs. Med Care. 1998;36(9):1324-1336.
- 11 Kashner TM, Muller A, Richter E, Hendricks A, Lukas CD, Stubblefield DR; RATE Project Committee, Rate Alternative Technical Evaluation. Private health insurance and veterans use of Veterans Affairs care. Med Care. 1998; 36(7):1085-1097.
- 12 Kashner TM, Trivedi MH, Wicker A, Fava M, Wisniewski SR, Rush AJ. The impact of nonclinical factors on care use for patients with depression: a STAR*D report. CNS Neurosci Ther. 2009;15(4):320–332.
- 13 Clyde M, George E. Model uncertainty. Stat Sci. 2004;19(1):81-94.
- 14 Cohen JJ; Blue Ribbon Panel on VA-Medical School Affiliations. The Report of the Blue Ribbon Panel on VA-Medical School Affiliations: Transforming an Historic Partnership for the 21st Century. Washington, DC: Dept of Veterans Affairs; 2009.
- 15 Kennedy TJT, Lingard L, Baker GR, Kitchen L, Regehr G. Clinical oversight: conceptualizing the relationship between supervision and safety. J Gen Intern Med. 2007;22(8):1080-1085.
- 16 McKee M, Black N. Does the current use of junior doctors in the United Kingdom affect the quality of medical care? Soc Sci Med. 1992;34(5):549-558.
- 17 Sox CM, Burstin HR, Orav EJ, et al. The effect of supervision of residents on quality of care in five university-affiliated emergency departments. Acad Med. 1998;73(7):776-782.
- 18 Fallon WF Jr, Wears RL, Tepas JJ. Resident supervision in the operating room: does this impact on outcome? J Trauma. 1993;35(4):556-560.
- 19 Chang BK. Resident supervision in VA teaching hospitals: ACGME bulletin. Available at: http://www.acgme.org/acWebsite/bulletin/bulletino9_o5.pdf. Accessed January 21, 2010.
- 20 Itani KMF, DePalma RG, Schifftner T, et al. Surgical resident supervision in the operating room and outcomes of care in Veterans Affairs hospitals. Am J Surg. 2005;190(5):725-731.
- 21 Velamahos GC, Fill C, Vassiliu P, Nicolaou N, Radin R, Wilcox A. Around-theclock attending radiology coverage is essential to avoid mistakes in the care of trauma patients. Am Surg. 2001;67(12):1175-1177.
- 22 Singh H, Thomas EJ, Petersen LA, Studdert DM. Medical errors involving trainees: a study of closed malpractice claims from five insurers. Arch Intern Med. 2007;167(19):2030-2036.
- 23 ten Cate O. Trust, competence, and the supervisor's role in postgraduate training. BMJ. 2006;333(7571):748-751.
- 24 Huddle TS, Heudebert GR. Taking apart the art: the risk of anatomizing clinical competence. Acad Med. 2007;82(6):536-541.
- 25 ten Cate O, Scheele F. Competency-based postgraduate training: can we bridge the gap between theory and clinical practice? Acad Med. 2007;82(6):542-547.
- 26 Epstein RM, Hundert EM. Defining and assessing professional competence. JAMA. 2002;287(2):226-235.
- 27 Epstein RM. Assessment in medical education. N Engl J Med. 2007;356(4):387-396.
- 28 Kennedy TJT, Regehr G, Baker GR, Lingard L. Point of care assessment of medical trainee competence for independent clinical work. Acad Med. 2008;83(10):589-592.
- 29 Kennedy TJT, Lingard LA. Questioning competence: a discourse analysis of attending physicians' use of questions to assess trainee competence. Acad Med. 2007;82(10):S12-S15.
- 30 Kogan JR, Holombe ES, Hauer, KE. Tools for direct observation and assessment of clinical skills of medical trainees: a systematic review. Acad Med. 2009;302(12):1316-1326.

APPENDIX 1

Resident Supervision Index – Inventories

RSI-I ver. 3.11

RESIDENT SUPERVISION INDEX

Responder:	□ -Resident.	☐ -Attending F	hysician.	Other:_				
Date Beg:	, ,		am	Date End:	,	, ,		am
	/ / m dd yy	hr min	pm	-	/ mm dd	/ Jy	hr min	pm
	Inres nami Resid	ent:				[pres_i		
[pres_nam] Resident:							d]	
[paj None [ppat_nam] Patient:						B-F	-,	
լոեյ□ Reside	ent-attending	encounter						
1. For how	many minutes	was this case	discusse	ed with attend	ling?	min:		
1(A). How w	as this case di	scussed (check o	one)?					
[7] 🗆	face-to-face /g	roup.	[M]□ te	elephone.				
[47]	face-to-face /ir	idividual.	[и]□ ра	atient's chart.				
[M] 🗆	telemedicine /\	ideo confer.	[v]□ ei	mail/letter/tex	t message.			
1(B). For wh	nat purpose wa:	s this case disc	cussed (d	theck all)?				
[/]	case generally		[M]□ cl	nart review or	test result,			
[47]	patient call / er	mail / letter,	[M]□ pi	rior patient er	counter.			
po □ <i>Reside</i>	ent-attending	patient enco	unter					
	e the presence			ny minutes di	id the	_		
	nt discuss the o				id tile	min:		
2(B). In the	presence of the	e patient, how r	many mii	nutes did resi	dent spend:			
2(B)(a).	observing only?	•				min:		
-(-)(-)	n direct contact was	with patient w	hile the a	attending				
	(i). in the room	and participatin	g in care1	?		min:		
((ii), in the room	but not participa	ating in ca	are?		min:		
(iji). in the clinic	area?						
(4	iv). notin the c	linic area but av	ailable by	phone / pager	?	min:		
(v). not availabl	le?				min:		
	w many minute t when the resid			ime with the		min:		
□ All encou	ınters							
	cussion contrik	ute to case un	derstand	ling?	□ - ye	·e	□-no	
	tion with attend		confir		-		not discusse	nd.
	tient's history?				<u> </u>	<u>:1</u>		<u>=u</u>
	amination finding							
	erpretation of dia		_				_	
	gnosis?		_		_		_	
	sessment?							
(vi). pla	n?							
Intervioner	DA'	TE: nom /d	ld h	or TIM	(D· ·	am / mm	70.00	as 3 11

RSI-I ver. 4.01

RESIDENT SUPERVISION INDEX

Attending Physician

Responde	er: 🛘 -Attending Physici	an.	□ -Other	:					
Date Beg:	/ /		əm om	Date End:	1	ı	1	: hr min	am pm
	mm dd yy	hr min			mm	dd	уу	hr min	
	[pres_nam] Resident: _						[pres_id	l	
[pphy_na	mj Attending Physician: _						[pphy_id	l	
[Da] 🗆 Non	e [ppat_nam] Patient: _						[ppat_id]	
	ending oversight								
	how many minutes did th present:	e attendir	ng physic	ian when th	ne resider	nt was			
1(A)-	have direct contact with	patient:							
(i).	to oversee reside	ent care o	nly?			п	nin:		
(ii).									
(iii).									
1(B).	talk to staff to oversee re	esident ca	re?						
1(C).	review patient chart to o	versee re:	sident ca	re?					
pcj□ Res	sident-attending-patie	ent enco	unter						
	itside the presence of the			y minutes o	did the	п	nin:		
2(B). Dic	d discussion contribute to	case und	derstandi	ng?		- yes		□ - no	
2(C)- Int	eraction with attending	-	confirm	ed chang	ged no	<u>either</u>	1	not discuss	ed
(i).	patient's history?								
(ii).	examination findings?								
(iii).	interpretation of diagnostic	testing?							
(iv).	diagnosis?								
(v).	assessment?								
(vi).	plan?								

Interviewer:	DATE: mm	/dd	/vv	TIME:	:	am / 1	om.	ver. 4.01

Appendix 2

CASE EXAMPLES COMPUTING RESIDENT SUPERVISION INDEX SCORES

Case 1

A first-year resident examines a patient with dyspnea alone (15 minutes), suggests pleural effusion to the attending physician, who after discussion with the resident recommends a chest x-ray (9 minutes). The attending physician confirms the resident's interpretation of the x-ray and recommendation for thoracentesis (6 minutes). The attending physician performs the procedure, while the inexperienced resident observes (30 minutes). The attending physician reviews and signs the medical chart (3 minutes). The attending was absent from care for 15 minutes (level 3.5), 30 minutes providing care (level 3.2), 9 minutes interacting with residents to direct care (level 2.1), 6 minutes overseeing and confirming the resident's thoracentesis recommendation (level 1.4), and 3 minutes signing the patient's chart (level 1.3). Thus, absent-attending care $RSI_{3.5} = 15$ minutes, providing care $RSI_{3.2} = 30$ / (15 + 30) = 0.67, interaction $RSI_{2.1} = 9$ (15 + 30 + 9) = 0.17, oversight case presentation $RSI_{1.4} = 6 / (15 + 30 + 9 + 6) = 0.10$, and oversight medical chart review $RSI_{1,3} = 3$ / (15 + 30 + 9 + 6 + 3) = 0.05. Patient care summary is $RSI_{care} = 1 - [(1 - 0.67) \times (1 - 0.17)] = 0.73,$ indicating the resident was under direct supervision during 73% of patient care and was responsible for $RSI_{resp} = 27\%$, or (1 - 0.73), of patient care. The encounter summary is $RSI_{enc} = 1 - [(1 - 0.67) \times$ $(1 - 0.17) \times (1 - 0.10) \times (1 - 0.05) = 0.77$, or the resident was under direct supervision during 77% of the encounter.

Case 2

Same as case 1, but a second-year resident orders the x-ray and recommends thoracentesis to the attending physician, who confirms both diagnosis and treatment plan (12 minutes). The resident also performs the thoracentesis with the physician watching (30 minutes). The attending physician continues to be absent for 15 minutes during patient services but now spends 30 minutes (level 3.4) observing the resident performing the thoracentesis. Attending-observed care $RSI_{3.4} = 0.0$ in case 1 increased to $RSI_{3.4} = 30 / (15 + 30) = 0.67$ in case 2, while attendingprovided care $RSI_{3,2} = 0.67$ decreased to $RSI_{3,2} = 0$. That is, direct supervision shifted from the attending providing care to a lesser intensive attending observing the resident providing care. There is no attending interaction, with $RSI_{2,1}$ decreasing from 0.17 in case 1 to 0.0 in case 2. Oversight case presentation increased from 0.10 to $RSI_{1.4} = 12 / (15 + 30 + 12) = 0.21$. Oversight medical chart review remains essentially unchanged at $RSI_{1,3} = 1$ (15 + 30 + 12 + 3) = 0.05. Patient care supervision decreased from 0.73 in case 1 to $RSI_{care} = 0.67$ and $RSI_{resp} = 1 - 0.67 = 0.33$ in case 2. Encounter supervision decreased slightly from 0.77 to $RSI_{enc} = 1 - [(1 - 0.67) \times (1 - 0.21) \times (1 - 0.05)]$ = 0.75 in case 2.

Case 3

Same as case 2, but a third-year resident performs the thoracentesis without the attending physician present. Time for absent-attending care increased from 15 minutes to $RSI_{3.5} = 45$ minutes. Time for attending observing care decreased to $RSI_{3.4} = 0.00$, with attending interaction and oversight intensities unchanged. Thus, the intensity of supervision for patient care decreased from 0.67 to $RSI_{care} = 0.00$, with $RSI_{resp} = 1 - 0.00 = 1.00$. That is, the resident was autonomously providing patient care, with overall supervision for the encounter decreasing from 0.75 to $RSI_{enc} = 1 - [(1 - 0.21) \times (1 - 0.05)] = 0.25$.

Case 4

Same as case 3, but the attending physician tells the resident not to report back unless a problem occurs. Oversight case presentation decreased from 0.21 to $RSI_{1.4} = 0.00$, leaving supervision for the encounter to decrease from 0.25 in case 3 to $RSI_{enc} = 0.05$ in case 4.

Summary

Taken together, these 4 cases provide an example of how the increasing clinical competencies of a resident can lead to reduced intensity of supervision for patient care from 0.73 to 0.00, and for the encounter from 0.77 to 0.05, with assigned responsibility increasing from 0.27 to 1.00. From case 1 to case 4, residents were progressively assigned to full responsibility for patient care, while remaining supervised for the encounter.