
How Data Analytics Can Be Leveraged to
Enhance Graduate Clinical Skills Education
Brian T. Garibaldi , MD, MEHP
McKenzie Hollon , MD, FASE
Michelle I. Knopp , MD

Abigail Ford Winkel , MD, MHPE
Jesse Burk-Rafel , MD, MRes
Holly A. Caretta-Weyer , MD, MHPE

P recision medical education (PME) leverages
data about individual learners to guide person-
alized education.1-3 A PME cycle starts with

data inputs that are analyzed to generate insights about
a learner. Insights then inform personalized interven-
tions that lead to measurable outcomes. Outcomes
inform iterative adjustments to the cycle.3 PME cycle
inputs in graduate medical education (GME) have
expanded from traditional sources (eg, knowledge-
based examinations, direct observation) to include
data from the electronic health record (EHR), real-
time location systems, and other technologies. Multi-
modal data capture may allow for a more complete
picture of learners, their behaviors, and their environ-
ment to improve educational and patient outcomes.
Methods for analyzing these data to generate insights
are nascent.1 This perspective discusses current chal-
lenges and opportunities in using data analytics to
optimize clinical skills training (TABLE).

US residency programs rely on Clinical Compe-
tency Committees (CCCs) to make determinations
regarding trainee advancement.4,5 The cognitive load
of the CCC can lead to decision fatigue, groupthink,
and bias.6 CCCs may have a narrow view into a
trainee’s performance, with at best a limited data set
and at worst one that is misrepresentative. For example,
internal medicine residents may spend little time in
direct contact with patients,7-10 which will lead to
few opportunities for direct observation. Simulation
is often used to address this issue,11,12 but there is
renewed interest in observations of real patient inter-
actions.13-17 One method is to capture frequent assess-
ments of entrustable professional activities (EPAs)
during patient care.18-23 However, this data can be
difficult to synthesize in a way that leads to action-
able insights, and may be costly due to the need for
faculty participation in data collection.24 There is
also no clear consensus on the common elements of
clinical competence within and across specialties.

Passively acquired (“no-touch”) data can increase
the quantity of information about trainees.13 Real-
time tracking systems provide information about

movement through the clinical environment, includ-
ing data about inter-resident and service-based dif-
ferences in clinical activities.1,7,10 These data could
help suggest improvements in trainee workflow or
modifications to specific rotations to generate desired
clinical experiences. EHR data includes how users
interact with the EHR (metadata), clinical reasoning
in notes, clinical exposure, prescribing habits, and
patient outcomes.25-27 Given that the attributions of
tasks or clinical outcomes to an individual trainee
can be challenging,28 EHR-derived measures like
Trainee Attributable & Automatable Care Evalua-
tions in Real-time (TRACERs) might help more
directly link outcomes to individual behaviors and
provide feedback to improve performance. For exam-
ple, TRACERs can give feedback on whether a trainee
is ordering anti-hyperglycemic therapies based on cur-
rent guidelines.29 The promise of such approaches
cannot be fully realized until medical informaticists
find solutions to the lack of standardized data collec-
tion across different EHRs.30-32 Common data lan-
guages standardize clinical data for research33,34;
similar data dictionaries could help address this issue
in medical education. A downside to grounding assess-
ment in EHR metrics is that it might provide addi-
tional incentive for learners to focus on the EHR at
the expense of time with patients.

Data analytics, including the use of artificial intel-
ligence (AI), may help to generate insights from vast
and disparate data sources. AI is starting to be used
in assessment, clinical reasoning, teaching, and other
activities.35 AI could potentially help with data col-
lection, personalized analytics, participatory interven-
tions, and prediction of outcomes.36 Natural language
processing (NLP) can analyze narrative feedback about
trainees to potentially improve evaluation processes
while reducing administrative burden.37 NLP can also
evaluate trainees’ notes for clinical reasoning.38 Gen-
erative AI can incorporate multimodality inputs that
may be too difficult for human evaluators to synthe-
size. This synthesis could guide educational interven-
tions, such as suggesting learning content to review
or assigning specific clinical encounters to address a
gap in prior experience.3 Additionally, the ability ofDOI: http://dx.doi.org/10.4300/JGME-D-24-00776.1
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generative AI to develop learning cases at scale could
revolutionize simulation and create new avenues for
trainee assessment.39

Appropriate use of AI in medical education requires
ethical frameworks, interdisciplinary collaborations,
investment in education, promotion of transparency
and accountability, and monitoring to evaluate impact.
Key ethical principles include privacy, security, trans-
parency, accountability, and fairness.40 Data about
trainees must be managed to protect learners as well as
patient privacy. Challenges include determining who
will have access to the insights generated from learner
data and for what purpose. For example, should
insights be shared with prospective employers or
patients? The potential consequences of using GME
data to inform subsequent training and practice
need to be explored. If learners and assessors sus-
pected that data would be shared outside of the edu-
cational environment, this could undermine the entire
assessment system. The use of AI must be disclosed
to trainees, and appropriate monitoring methods must
be instituted. Additionally, AI-based analytics should
complement bedside assessments, not replace them.
The cost of data collection, storage, and third-party
systems must be considered. These costs may be offset
by improved clinical performance with reduced need

for remediation, or by freeing up faculty time for
other tasks.

Mistrust in learner assessments may be another
barrier to PME implementation.41 Interpretation of
assessments is hampered by variation among programs
in assessment methods used, reduced in-person feed-
back, and concerns about validity evidence.42 Many
clinicians are unaware of the use of EHR metadata
to generate insights about their clinical performance.
Some mistrust the data or fear its misuse by employers.43

This highlights the need to accrue evidence of validity
for new analytic techniques, including with direct
observation of clinical behavior. The issue of mistrust
also emphasizes the importance of engaging stake-
holders in the analytic process. With the potential
effects of PME on future training and employment,
trainees should have a seat at the table when deciding
on how data insights are used. One could imagine a
hybrid system where GME program directors agree
on a minimum specialty-specific standard for clinical
competency and then, using personalized data, partner
with trainees to identify individual professional goals.

Data analytics are only valuable if the generated
insights provide actionable guidance to trainees. Cur-
rently that guidance is fragmented, in part reflecting the
disorganized manner of data collection and synthesis.

TABLE

Improving Data Analytics in Precision Education in Support of Clinical Skills Development

Activity Description

Develop shared mental models and
definitions of clinical competence

Agree on the common elements of clinical competence within and across
specialties.

Leverage technology to aid in the
collection and validation of
assessment data

Utilize data from the EHR, RTLS, and other sources to broaden the quality and
quantity of assessment data available about trainees.

Study validity evidence for “no” and “low-touch” assessments of clinical skills
including novel assessments and technology-based metrics (eg, TRACERs).

Incorporate more direct observation of
trainees in the workplace

Incorporate more direct observation of learners in the workplace as part of a
renewed emphasis on the importance of physicians spending time in direct
contact with patients. Correlating direct observations with novel metrics might
help to decrease the cost and burden of in-person observations.

Use data analytics to provide insights Use AI to analyze large volumes of data to create meaningful insights about
trainees.

Issues related to data privacy, data access, cost of maintenance, and operation
need to be fully explored.

Build trust in assessments Obtain validity evidence for assessments for different settings and subjects.
Ensure assessments are fit for purpose (ie, they capture what they intend to

measure).
Appropriately manage learner attribution and contribution.
Maintain appropriate data privacy.

Develop interventions Use insights to affect trainee learning and clinical outcomes. Measurements of
interventions are critical to help drive this area forward and optimize both
learning and patient care.

Safety in assessment GME programs could use insights to develop individualized learning plans for
trainees but must consider potential consequences of data access by
fellowship programs, prospective employers, and patients.

Abbreviations: EHR, electronic health record; RTLS, real-time tracking systems; TRACERs, Trainee Attributable & Automatable Care Evaluations in Real-time; AI,
artificial intelligence; GME, graduate medical education.
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Even high-quality, well-organized data can overwhelm
trainees’ efforts to make sense of feedback. One hopes
that formal coaching programs that translate insights
into developmental plans in partnership with trainees
will result in a more satisfying professional experience
and improvements in clinical skills.44-47

Similar to how the mapping of the human genome
enabled the launch of the National Institutes of
Health Precision Medicine Initiative a decade ago,
we must articulate PME’s key building blocks to realize
its potential. Discussion and clarification about data
analysis in the educational setting may enable innova-
tors to define these building blocks. Development of
shared data definitions, learner models, educational out-
comes of interest, and guidelines for privacy and secu-
rity are some of the first areas educators should tackle.
EHR data and AI will likely play key roles in PME,
but we must also prioritize obtaining validity evidence
for assessments that incorporate direct observations of
clinical skills. These efforts will be enhanced by engag-
ing learners in this process; as stakeholders they can
contribute unique perspectives on professional growth
and effects on future career opportunities. Finally, as
clinical competence is specialty-specific, development of
PME tools will require collaboration across multiple
specialties to ensure that analytic processes work across
the continuum of medical education.
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